
Discrimination in Online Ad Delivery
Google ads, black names and white names, racial
discrimination, and click advertising

Do online ads suggestive of arrest records appear more often with
searches of black-sounding names than white-sounding names? What
is a black-sounding name or white-sounding name, anyway? How
many more times would an ad have to appear adversely affecting one
racial group for it to be considered discrimination? Is online activity so
ubiquitous that computer scientists have to think about societal
consequences such as structural racism in technology design? If so,
how is this technology to be built? Let's take a scientific dive into
online ad delivery to find answers.

by Latanya Sweeney

Eventual Consistency Today: Limitations, Extensions, and Beyond
How can applications be built on eventually consistent
infrastructure given no guarantee of safety?

In a July 2000 conference keynote, Eric Brewer, now VP of engineering
at Google and a professor at the University of California, Berkeley,
publicly postulated the CAP (consistency, availability, and partition
tolerance) theorem, which would change the landscape of how
distributed storage systems were architected. Brewer's conjecture--
based on his experiences building infrastructure for some of the first
Internet search engines at Inktomi--states that distributed systems
requiring always-on, highly available operation cannot guarantee the
illusion of coherent, consistent single-system operation in the presence
of network partitions, which cut communication between active
servers. Brewer's conjecture proved prescient: in the following decade,
with the continued rise of large-scale Internet services, distributed-
system architects frequently dropped "strong" guarantees in favor of
weaker models--the most notable being eventual consistency.

by Peter Bailis, Ali Ghodsi

A File System All Its Own
Flash memory has come a long way. Now it's time for software
to catch up.

In the past five years, flash memory has progressed from a promising
accelerator, whose place in the data center was still uncertain, to an
established enterprise component for storing performance-critical
data. It's rise to prominence followed its proliferation in the consumer
world and the volume economics that followed (see figure 1). With
SSDs (solid-state devices), flash arrived in a form optimized for
compatibility - just replace a hard drive with an SSD for radically
better performance. But the properties of the NAND flash memory
used by SSDs differ significantly from those of the magnetic media in
the hard drives they often displace. While SSDs have become more
pervasive in a variety of uses, the industry has only just started to
design storage systems that embrace the nuances of flash memory. As
it escapes the confines of compatibility, significant improvements in
performance, reliability, and cost are possible.

by Adam H. Leventhal

Storage
Vol. 11 No. 3 – March 2013

A Special Offer to Join ACM - Why Join ACM?

vangen
Typewritten Text
© 2013 ACM, INC. All Rights Reserved.

http://www.acm.org/joinacm2?ref=queue
http://queue.acm.org/
http://www.acm.org/

SEARCH ENGINES

1

Discrimination in Online Ad Delivery

Google ads, black names and white names, racial discrimination, and click advertising

Latanya Sweeney

Do online ads suggestive of arrest records appear more often with searches of black-sounding names
than white-sounding names? What is a black-sounding name or white-sounding name, anyway?
How many more times would an ad have to appear adversely affecting one racial group for it to be
considered discrimination? Is online activity so ubiquitous that computer scientists have to think
about societal consequences such as structural racism in technology design? If so, how is this
technology to be built? Let’s take a scientific dive into online ad delivery to find answers.

“Have you ever been arrested?” Imagine this question appearing whenever someone enters your
name in a search engine. Perhaps you are in competition for an award, a scholarship, an appointment,
a promotion, or a new job, or maybe you are in a position of trust, such as a professor, a physician,
a banker, a judge, a manager, or a volunteer. Perhaps you are completing a rental application, selling
goods, applying for a loan, joining a social club, making new friends, dating, or engaged in any one
of hundreds of circumstances for which someone wants to learn more about you online. Appearing
alongside your list of accomplishments is an advertisement implying you may have a criminal record,
whether you actually have one or not. Worse, the ads may not appear for your competitors.

Job applications frequently include questions such as: Have you ever been arrested? Have you
ever been charged with a crime? Other than a traffic ticket, have you been convicted of a crime?
Employers ask these questions to establish trustworthiness. Because others often equate a criminal
record with not being reliable or honest, protections exist for those having criminal records.

If an employer disqualifies a job applicant based solely upon information indicating an arrest
record, the company may face legal consequences. The U.S. EEOC (Equal Employment Opportunity
Commission) is the federal agency charged with enforcing Title VII of the Civil Rights Act of 1964,
a law that applies to most employers, prohibiting employment discrimination based on race, color,
religion, sex, or national origin. Guidance issued in 1973 extended protections to people with
criminal records.5,11 Title VII does not prohibit employers from obtaining criminal background
information. Certain uses of criminal information, however, such as a blanket policy or practice of
excluding applicants or disqualifying employees based solely upon information indicating an arrest
record, can result in a charge of discrimination.

To make a determination, the EEOC uses an adverse impact test that measures whether certain
practices, intentional or not, have a disproportionate effect on a group of people whose defining
characteristics are covered by Title VII. To decide, you calculate the percentage of people affected in
each group and then divide the smaller value by the larger to get the ratio and compare the result
to 80. For example, suppose a company laid off comparable black and white workers at the same
rate—25 percent of blacks and 25 percent of whites—then the ratio, 25 divided by 25, would be 100
percent. If the ratio is less than 80 percent, then the EEOC considers the effect disproportionate and
may hold the employer responsible for discrimination.6

SEARCH ENGINES

2

What about online ads suggesting someone with your name has an arrest record, even when no
one with your name has been arrested? Title VII does not apply unless you have an arrest record and
can prove the potential employer routinely uses ads or information from the company sponsoring
the ads, and the result has an inappropriate chilling effect on hiring applicants with criminal
records.

The advertiser may argue the ads are commercial free speech—a constitutional right to display the
ad associated with your name. The First Amendment of the U.S. Constitution protects advertising. In
a landmark decision, the U.S. Supreme Court set out a test for assessing government restrictions on
commercial speech, which begins by determining whether the speech is misleading.3 Are online ads
suggesting the existence of an arrest record misleading if no one by that name has an arrest record?

Assume the ads are free speech: what happens when these ads appear more often for one racial
group than another? Not everyone is being equally affected by the free speech. Is that free speech or
racial discrimination?

Racism, as defined by the U.S. Commission on Civil Rights, is “any attitude, action, or
institutional structure which subordinates a person or group because of their color . . . Racism is not
just a matter of attitudes; actions and institutional structures can also be a form of racism.”16 Racial
discrimination results when a person or group of people is treated differently based on their racial
origins, according to the Panel on Methods for Assessing Discrimination of the National Research
Council.12 Power is a necessary precondition, because discrimination depends on the ability to give
or withhold benefits, facilities, services, opportunities, etc., from someone who should be entitled to
them and is denied on the basis of race. Institutional or structural racism, as defined in The Social Work
Dictionary, is a system of procedures/patterns whose effect is to foster discriminatory outcomes or
give preferences to members of one group over another.1

Racism can result, even if not intentional, and online activity now may be so ubiquitous that
computer scientists have to think about societal consequences such as structural racism in the
technology they design. These considerations frame the big picture, the relevant legal, societal, and
technical landscape in which this exploration resides. Now we turn to the exploration itself: whether
online ads suggestive of arrest records appear more often for one racial group than another among a
sample of racially associated names. Then, we examine the role technology might play in combating
this problem if evidence of the pattern exists.

THE PATTERN
What is the suspected pattern of ad delivery? Here is an overview of the issue with some real-world
examples.

This study begins with the assumption that personalized ads suggestive of arrest records do not
differ by race. We did this by carefully constructing the scientifically best instance of the pattern—
one with names shown to be racially identifying and pseudo-randomly selected.

Earlier this year, a Google search for Latanya Farrell, Latanya Sweeney, and Latanya Lockett yielded
the ads and criminal reports shown in figure 1. The ads appeared on Google.com (figure 1a,1c,1e)
and on a news Web site, Reuters.com, to which Google supplies ads (figure 1c, bottom), All the ads in
question linked to instantcheckmate.com (figure 1b,1d,1f). The first ad implied Latanya Farrell may
have been arrested. Was she? Clicking on the link and paying the requisite subscription fee revealed

SEARCH ENGINES

3

that the company had no arrest record for her (figure 1b). There is no arrest record for Latanya
Sweeney either, but there is for Latanya Lockett.

In comparison, searches for Kristen Haring, Kristen Sparrow, and Kristen Lindquist did not yield any
instantcheckmate.com ads (figure 2a, 2c, and 2e), even though the company’s database reported
having records for all three names and arrest records for Kristen Sparrow and Kristen Lindquist (figure
2d and 2f).

Searches for Jill Foley, Jill Schneider, and Jill James displayed instantcheckmate.com ads with neutral
copy; the word arrest did not appear in the ads even though arrest records for all three names
appeared in the company’s database. Figure 3 shows the ads and criminal reports for these three
names appearing on Google.com (figure 1c, 1e) and Reuters.com (figure 1a). Criminal reports came
from instantcheckmate.com (figure 1b, 1d, 1f).

E R U G I F

E R U G I F

E R U G I F
E R U G I F
E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

D

E

F

A

B

C C

Sample Ads and Criminal Reports

SEARCH ENGINES

4

Finally, we considered a proxy for race associated with these names. Figure 4 shows a racial
distinction in the Google images that appear for image searches of Latanya, Latisha, Kristen, and
Jill, respectively. The faces associated with Latanya and Latisha tend to be black, while white faces
dominate the images of Kristen and Jill.

Together, these handpicked examples describe the suspected pattern: ads suggesting arrest tend to
appear with names associated with blacks, and neutral ads or no ads appear with names associated
with whites, regardless of whether the company placing the ad reveals an arrest record associated
with the name.

E R U G I F

E R U G I F

E R U G I F
E R U G I F
E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

Sample Ads and Criminal Reports that Include the First Name,”Kristen”

A B

C
D

E
F

SEARCH ENGINES

5

GOOGLE ADSENSE
Who generates the ad’s text? Who decides when and where an ad will appear? What is the
relationship among Google, a news Web site such as Reuters, and Instant Checkmate in the previous
examples? An overview of Google AdSense, the program that delivered the ads, explains the links
between these companies.

In printed newspapers and magazines, ad space and ad content are fixed. Traditionally, everyone
who reads the publication sees the same ad in the same space. Web sites are different. Online ad
space, not bound by the same physical limitations, can be dynamic, with ads tailored to the reader’s

E R U G I F

E R U G I F

E R U G I F
E R U G I F
E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

A B

C

D

E

F

Sample Ads and Criminal Reports for Names that Include the First Name “Jill”

SEARCH ENGINES

6

search criteria, interests, geographical location, and so on. Any two readers (or even the same reader
returning to the same Web site) might view different ads.

Google AdSense is the largest provider of dynamic online advertisements, placing ads for millions
of sponsors on millions of Web sites.9 In the first quarter of 2011, Google earned US$2.43 billion
($9.71 billion annualized), or 28 percent of its total revenue, through Google AdSense.10 Several
different advertising arrangements exist, but for simplicity this article describes only those features
of Google AdSense specific to the Instant Checkmate ads in question.

When a reader enters search criteria on an enrolled Web site, Google AdSense embeds into

E R U G I F

E R U G I F

E R U G I F
E R U G I F
E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

Sample Face Images on Google.com
A B

C
D

E

F

SEARCH ENGINES

7

the page of results ads that are believed to be relevant to the search. Figures 1, 2, and 3 show ads
delivered by Google AdSense in response to various firstname lastname searches.

An advertiser provides Google with search criteria, copies of possible ads to deliver once a match
occurs, and a bid of how much the sponsor is willing to pay if a reader clicks the delivered ad. (This
article conflates two interacting Google programs: Google AdWords allows advertisers to specify
search criteria, ad text, and bids; and Google AdSense delivers the ads to host sites.) Google operates a
realtime auction across bids for the same search criteria, computing an overall “quality score” to use
as the basis for the auction. The quality score includes many factors such as the past performance of
the ad and characteristics of the company’s Web site.10 The ad with the highest quality score appears
first, the second-highest second, and so on, and Google may elect not to show any ad if it considers
the bid too low or if showing the ad exceeds a threshold (e.g., a maximum account total for the
sponsor). The Instant Checkmate ads in figures 1, 2, and 3 often appeared first among ads, implying
Instant Checkmate had the highest quality score.

A Web-site owner that wants to “host” online ads enrolls in AdSense and modifies the Web site
to include special software that sends information about the current reader (e.g., search criteria) to
Google; in exchange, the Web site receives corresponding ads from Google. The displayed ads have
the banner “Ads by Google” when they appear on sites other than Google.com. For example, Reuters.
com is an AdSense host, and entering Latanya Sweeney in the search bar generated a new Web page
with ads delivered by Google, bearing the banner “Ads by Google” (figure 1c).

There is no cost associated with displaying an ad, but if the user actually clicks the ad, the
sponsor pays the bid price. This may be as little as a few pennies, and the amount is split between
Google and the host. Clicking the Latanya Sweeney ad on Reuters.com (figure 1c) would cause Instant
Checkmate to pay its bid to Google, and Google would split the payment with Reuters.

SEARCH CRITERIA
What search criteria did Instant Checkmate specify? Are ads randomly delivered? Do ads rely only on
the first name? Will ads be delivered for made-up names? Google AdSense provides answers to these
questions. Ads displayed on Google.com allow users to learn why a specific ad appeared. Clicking the
circled “i” in the ad banner (e.g., figure 1c) leads to a Web page explaining the ads. Doing so for ads
in figures 1 and 3 reveals that the ads appeared because the search criteria associated with the bid
matched the exact first- and last-name combination searched. Because a company presumably bids
on records it sells, the names would likely be the first and last names of real people.

This means that the search criteria associated with these ads have to consist of both first and last
names, and the names should belong to real people.

The next steps describe the systematic construction of a list of racially associated first and last
names for real people to use as search criteria. Instant Checkmate is not presumed to have used such
a list in placing bids, nor Google in delivering ads. Rather, the list provides a qualified sample of
racially associated names to use in testing ad-delivery systems.

BLACK- AND WHITE-IDENTIFYING NAMES
Black-identifying and white-identifying first names occur with sufficiently higher frequency in one
race than the other.

In 2003 Marianne Bertrand and Sendhil Mullainathan of the NBER (National Bureau of Economic

SEARCH ENGINES

8

Research) did a field experiment in which they provided resumes to job ads that were virtually
identical, except that some of the resumes had black-identifying names and others had white-
identifying names.2 Their job discrimination study showed significant discrimination against black
names: white names received 50 percent more callbacks for interviews, even though the resumes
otherwise had identical qualifications.

The study used a correlation of names given to black and white babies in Massachusetts between
1974 and 1979, defining black-identifying and white-identifying names as those that have the
highest ratio of frequency in one racial group to frequency in the other racial group.

In the popular book Freakonomics (William Morrow, 2006), Steven Levitt and Stephen Dubner
report the top 20 whitest- and blackest-identifying girls’ and boys’ names. The list comes from earlier
work by Levitt and Roland Fryer, which shows a pattern change in the way blacks named their
children starting in the 1970s, which they correlate with the Black Power Movement.7 They postulate
that the movement influenced how blacks perceived their identities, and they give as evidence that
before the movement, names given to black and white children were not distinctly different, but
after the movement distinctly black names emerged.

Similar to the job discrimination study, the list used by Fryer and Levitt was compiled from names
given to black and white children recorded in California birth records from 1961-2000 (more than 16
million births).

To test methods of ad delivery, we combined the lists from these prior studies and added two
black female names, Latanya and Latisha. Table 1 lists the names used here, consisting of eight for
each of the categories: white female, black female, white male, and black male from the Bertrand
and Mullainathan job discrimination study (first row in table 1); and the first eight names for each
category from the Fryer and Levitt work (second row in table 1). Emily, a white female name, Ebony,
a black female name, and Darnell, a black male name, appear in both rows. The third row includes
the observation shown in figure 4. Removing duplicates leaves a total of 63 distinct first names.

White Female Black Female White Male Black Male
Allison
Anne
Carrie
Emily
Jill
Laurie
Kristen
Meredith

Aisha
Ebony
Keisha
Kenya
Latonya
Lakisha
Latoya
Tamika

Brad
Brendan
Geoffrey
Greg
Brett
Jay
Matthew
Neil

Darnell
Hakim
Jermaine
Kareem
Jamal
Leroy
Rasheed
Tremayne

Molly
Amy
Claire
Emily*
Katie
Madeline
Katelyn
Emma

Imani
Ebony*
Shanice
Aaliyah
Precious
Nia
Deja
Diamond

Jake
Connor
Tanner
Wyatt
Cody
Dustin
Luke
Jack

DeShawn
DeAndre
Marquis
Darnell*
Terrell
Malik
Trevon
Tyrone

Latanya
Latisha

TABLE 1. Black-identifying and white-identifying first names

SEARCH ENGINES

9

FULL NAMES OF REAL PEOPLE
Having a list of racially associated first names is a start, but testing ad delivery requires a real person’s
first and last name (full name). Web searches provide a means of locating and harvesting full names
by: (1) sampling names of professionals appearing on the Web; and (2) sampling names of people
active on social media sites and blogs (netizens).

Professionals often have their own Web sites or have biographical information appearing on
institutional Web sites, listing titles and positions and describing prior accomplishments and current
activities. Several professions, such as research, medicine, law, and business, often have degree
designations (e.g., PhD, MD, JD, or MBA) associated with people in that profession. A Google search
for a first name and a degree designation can yield lists of people having that first name and degree.
These kinds of searches can harvest a sample of full names of professionals with racially associated
first names.

The next step is to visit the Web page associated with each full name, and if an image is
discernible, record whether the person appears black, white, or other. Each Web page visited should
be archived to preserve images and content.

Here are two examples from my ad-delivery test. A Google search for Ebony PhD revealed links
for real people having Ebony as a first name—specifically, Ebony Bookman, Ebony Glover, Ebony Baylor,
and Ebony Utley. I harvested the full names appearing on the first three pages of search results, using
searches with other professional endings such as JD, MD, or MBA as needed to find at least 10 full
names for Ebony. Clicking on the link associated with Ebony Glover provided more information about
her, including an image.8 The Ebony Glover in this study appeared black.

Similarly, search results for Jill PhD listed professionals whose first name is Jill. Visiting links
yielded Web pages with more information about each person. For example, Jill Schneider’s Web page
had an image showing that she is white.14

Harvesting names of netizens is similar but simpler than harvesting names of professionals.
PeekYou searches were used to harvest a sample of full names of netizens who have racially
associated first names. The Web site peekyou.com compiles online and offline information on
individuals—thereby connecting residential information with Facebook and Twitter users, bloggers,
and others—and assigns its own rating for the size of each person’s online footprint. Search results
from peekyou.com list people with the highest score first, and include an image of the person.
Celebrities and public figures tend to be listed first, having the highest PeekYou scores, followed by
bloggers, tweeters, and the rest.

A PeekYou search for Ebony found Ebony Small, Ebony Cams, Ebony King, Ebony Springer, and Ebony
Tan. A PeekYou search for Jill found Jill Christopher, Jill Spivack, Jill English, Jill Pantozzi, and Jill Dobson.
After harvesting these and other full names, I reported the race of the person if discernible.

Using the approach just described, I harvested 2,184 racially associated full names of people with
an online presence from September 24 through October 22, 2012. Using the images associated with
those names, I was able to confirm that the racially associated first names were predictive of race.15
Most images associated with black-identifying names were of black people (88 percent), and an
even greater percentage of images associated with white-identifying names were of white people (96
percent).

Black names and white names were examined separately as predictors of race. The results showed
that 490 images of blacks had black-associated first names, and 68 did not; 18 images of blacks had

SEARCH ENGINES

10

white first names; 852 had neither black first names nor images of blacks. Similarly, 831 images of
whites had white first names, 50 images of whites did not have white first names; 39 had white first
names but nonwhite images, and 508 had neither white first names nor images of whites.

Google searches of first names and degree designations were not as productive as first name
lookups on PeekYou. On Google, the white male names Cody, Connor, Tanner, and Wyatt retrieved
results with those as last names rather than first names; the black male name Kenya was confused
with the country; and the black names Aaliyah, Deja, Diamond, Hakim, Malik, Marquis, Nia, Precious,
and Rasheed retrieved fewer than 10 full names. Only Diamond posed a problem with PeekYou
searches, seemingly confused with other online entities. Diamond was therefore excluded from
further consideration.

Some black first names had perfect predictions (100 percent): Aaliyah, DeAndre, Imani, Jermaine,
Lakisha, Latoya, Malik, Tamika, and Trevon. The worst predictors of blacks were Jamal (48 percent)
and Leroy (50 percent). Among white first names, 12 of 31 names made perfect predictions: Brad,
Brett, Cody, Dustin, Greg, Jill, Katelyn, Katie, Kristen, Matthew, Tanner, and Wyatt; the worst predictors
of whites were Jay (78 percent) and Brendan (83 percent). These findings strongly support the use of
these names as racial indicators in this study.

Sixty-two full names appeared in the list twice even though the people were not necessarily the
same. No name appeared more than twice. Overall, Google and PeekYou searches tended to yield
different names.

AD DELIVERY
With this list of names suggestive of race, I was ready to test which ads appear when these names
are searched. To do this, I examined ads delivered on two sites, Google.com and Reuters.com, in
response to searches of each full name, once at each site. The browser’s cache and cookies were
cleared before each search, and copies of Web pages received were preserved. Figures 1, 2, 3, 6, and 7
provide examples.

From September 24 through October 23, 2012, I searched 2,184 full names on Google.com and
Reuters.com. The searches took place at different times of day, on different days of the week, with
different IP and machine addresses operating in different parts of the United States using different
browsers. I manually searched 1,373 of the names and used automated means17 for the remaining
812 names. Here are 10 observations.

1. The ads were respectfully displayed, without clutter. We have all seen Web pages where ads get
in the way, dominating the page or being so closely woven into the page that you cannot distinguish
the ads from the content. That’s not the case here. No more than three ads ever appeared for a search
on either Google.com or Reuters.com. No company’s ad was listed more than once on a page, and
the ads appeared in a single set within a rectangular area in the margins. Google and Reuters are
respected sources of information, and displayed in this manner, the ads did nothing to take away
from the Web sites; conversely, the sites and respectful placement of ads may even exalt the ads.

2. Far fewer ads appeared on Google.com than Reuters.com—about five times fewer, even when
examining up to three pages of search results on Google.com. When ads did appear on Google.com,
typically only one ad showed, compared with three ads routinely appearing on Reuters.com. This
suggests Google may be sensitive to the number of ads appearing on Google.com.

3. Of 5,337 ads captured, 78 percent were for government-collected information (public records)

SEARCH ENGINES

11

about the person whose name was searched. Public records in the United States often include a
person’s address, phone number, criminal history, and professional and business licenses, though
specifics vary among states. Of the more than 2,000 names searched, 78 percent had at least one ad
for public records about the person being searched. Ads to buy a person’s public record appeared for
almost any name searched, but they came up on Reuters.com much more often than on Google.com.

4. Four companies had more than half of all the ads captured. These companies were Instant
Checkmate, PublicRecords (which is owned by Intelius), PeopleSmart, and PeopleFinders, and all
their ads were selling public records. Instant Checkmate ads appeared more than any other: 29
percent of all ads. Ad distribution was different on Google’s site; Instant Checkmate still had the
most ads (50 percent), but Intelius.com, while not in the top four overall, had the second most ads on
Google.com. These companies dominate the advertising space for online ads selling public records.

5. Instant Checkmate ads dominated the topmost ad position. They occupied that spot in almost
half of all searches on Reuters.com. The next closest, PublicRecords.com, rarely had the topmost spot,
but most frequently appeared in the second and third positions. Appearing as the first ad so often
suggests that, in general, Instant Checkmate offers Google more money or has higher quality scores
than do its competitors.

6. Ads for public records on a person appeared more often for those with black-associated names
than white-associated names, regardless of company. PeopleSmart ads appeared disproportionately
higher for black-identifying names—41 percent as opposed to 29 percent for white names.
PublicRecords ads appeared 10 percent more often for black first names than for white. Instant
Checkmate ads displayed only slightly more often for black-associated names (2 percent difference).
This is one of those interesting findings that spawn the question: Public records contain information
on everyone, so why more ads for black-associated names?

7. Instant Checkmate had the largest percentage of ads in virtually every first-name category,
except for Kristen, Connor, and Tremayne. For those names, Instant Checkmate had uncharacteristically
fewer ads (less than 25 percent). PublicRecords had ads for 80 percent of names beginning with
Tremayne, compared with only 23 percent for Instant Checkmate. Similarly, for Connor, PublicRecords
had 80 percent compared with 20 percent for Instant Checkmate, and for Kristen it was 58 percent
PublicRecords versus 16 percent Instant Checkmate. Why the underrepresentation in these first
names? Did Instant Checkmate avoid these names for some reason? Do these undercounts show
a glitch? During a conference call with company’s representatives, they asserted that Instant
Checkmate gave the same ad text to Google for groups of last names (not first names).

8. Almost all ads for public records included the name of the person, making each ad virtually
unique, but beyond personalization, the ad templates showed little variability. The only exception
was Instant Checkmate. For example, almost all PeopleFinder ads appearing on Reuters.com used the
same personalized template (“We found fullname. Current Address, Phone and Age. Find fullname,
Anywhere,” where the person’s first and last name replaces fullname). PublicRecords used five
templates and PeopleSmart seven, but Instant Checkmate used 18 different ad templates on Reuters.
com. Figure 5 enumerates ad texts and frequencies for all four companies (replace fullname with the
person’s first and last name).

Only Instant Checkmate ads used the word arrest, which appeared in eight of its 18 ad templates
found on Reuters.com. While Instant Checkmate’s competitors—PeopleSmart, PublicRecords, and
PeopleFinders—also sell criminal history information, none of their ads included the word arrest or
arrested.

SEARCH ENGINES

12

9. A greater percentage of Instant Checkmate ads using the word arrest appeared for black-
identifying first names than for white first names. More than 1,100 Instant Checkmate ads appeared
on Reuters.com, with 488 having black-identifying first names; of these, 60 percent used arrest in
the ad text. Of the 638 ads displayed with white-identifying names, 48 percent used arrest. This
difference is statistically significant, with less than a 0.1 percent probability that the data can be
explained by chance (chi-square test: c2(1)=14.32, p < 0.001). The EEOC’s and U.S. Department
of Labor’s adverse impact test for measuring discrimination is 77 in this case, so if this were an
employment situation, a charge of discrimination might result. (The adverse impact test uses the
ratio of neutral ads, or 100 minus the percentages given, to compute disparity: 100-60=40 and 100-
48=52; dividing 40 by 52 equals 77.)

The highest percentage of neutral ads (where the word arrest does not appear in the ad text) on
Reuters.com were those for Jill (77 percent) and Emma (75 percent), both white-identifying names.
Names receiving the highest percentage of ads with arrest in the text were Darnell (84 percent),
Jermaine (81 percent), and DeShawn (86 percent), all black-identifying first names. Some names

E R U G I F

E R U G I F

E R U G I F
E R U G I F
E R U G I F

E R U G I F

E R U G I F
E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

	

instantcheckmate Peoplesmart
382 Located: fullname

Information found on fullname fullname found in database.

7 We found: fullname
1) Get firstname's Background Report 2) Contact info &
More -try Free!

2 Located: The Person
Information found on them Person found in database.

87 We found: fullname
1) Get Aisha's Background Report 2) Current
Contact Info - Try Free!

96 We found fullname
Search Arrests, Address, Phone, etc. Search records for
fullname.

105 We found: fullname
1) Contact fullname -Free Info! 2) Current Address,
Phone & More.

4 We found Them
Search Arrests, Address, Phone, etc. Search records for
fullname.

348 We found: fullname
1) Contact fullname -Free Info! 2) Current Phone,
Address & More.

40 Background of fullname
Search Instant Checkmate for the Records of fullname

1 We found firstname
Get firstname in CA’s Email, Address, Phone,
Public Records & More Easy!

9 Background of Anyone
Search Instant Checkmate for the Records of fullname

1 We found firstname In lastname
1)Get firstname‘s Info – Try Now! 2)Current Phone,
Address & More.

17 fullname's Records
1) Enter Name and State. 2) Access Full Background
Checks Instantly.

1 Looking For fullname?
Get fullname’s Phone, Email Address, Public
Records & More Now!

3 Anyone’s Records
1) Enter Name and State. 2) Access Full Background
Checks Instantly.

Publicrecords

195 fullname: Truth
Arrests and Much More. Everything About fullname

570 fullname
Public Records Found For: fullname. View now.

67 fullname Truth
Looking for fullname? Check fullname's Arrests

128 fullname
Public Records Found For: fullname. Search now.

176 fullname, Arrested?
1) Enter Name and State. 2) Access Full Background
Checks Instantly.

13 Records: fullname
Database of all lastname's in the Country. Search now.

2 Uh Oh, Arrested?
1) Enter Name and State. 2) Access Full Background
Checks Instantly.

2 Fullname Info
View Contact Information For Free Quick & Easy Search
Results!

1 Found: fullname
We have the story on fullname fullname’s arrests,
relatives,etc.

56 fullname
We have Public Records For: fullname. Search
Now.

3 Fullname - Found
Learn the truth about fullname Check fullname’s
arrests & more.

Peoplefinders

4 Research fullname
We have details on fullname. fullname’s full
background & info.

523 We found fullname
Current Address, Phone and Age. Find fullname,
Anywhere.

55 fullname Located
Background Check, Arrest Records, Phone, & Address.
Instant, Accurate

8 We found fullname
1)Get Phone/ Address/ Age Instantly! 2) Find Anyone,
Anywhere for Free.

62 Looking for fullname?
Comprehensive Background Report and More on fullname

2 Find fullname
Get current and past addresses and phone numbers.
Instant results!

8 Looking for People in the US?
Comprehensive Background Report and More on fullname

1 We Found Them for Free
Current Address, Phone and Age. Find fullname
Anywhere.

Figure	
 5.	
 Templates	
 for	
 ads	
 for	
 public	
 records	
 on	
 Reuters	

Templates for Ads for Public Records on Reuters

SEARCH ENGINES

13

appeared counter to this pattern: Dustin, a white-identifying name, generated arrest ads in 81 percent
of searches; and Imani, a black-identifying name, resulted in neutral ads in 75 percent of searches.

10. Discrimination results on Google’s site were similar, but, interestingly, ad text and
distributions were different. Instant Checkmate ads appearing on Google.com often used different
ad text than those on Reuters.com. While the same neutral and arrest ads that were dominant on
Reuters.com also appeared frequently on Google.com, Instant Checkmate ads on Google included an
additional 10 templates, all using the word criminal or arrest. These new templates appeared in about
20 percent of the Instant Checkmate ads on Google.

More than 400 Instant Checkmate ads appeared on Google, and 90 percent of these were
suggestive of arrest, regardless of race. Together, these last two findings underscore other differences
between ads appearing on Google’s own site and those delivered by Google AdSense to Reuters. Ad
text was different. Ads with the word criminal and not arrest appeared only on Google’s site, and ads
using either arrest or criminal appeared much more often for both races on Google.com.

Still, on Google’s own site, a greater percentage of Instant Checkmate ads suggestive of arrest
displayed for black-associated first names than for white-associated names. Of the 366 ads that
appeared for black-identifying names, 92 percent were suggestive of arrest. Far fewer ads displayed
for white-identifying names (66 total), but 80 percent were suggestive of arrest. This difference in
the ratios 92 and 80 is statistically significant, with less than a 1 percent probability that the data
can be explained by chance (chi-square test: c2 (1)=7.71, p < 0.01). The EEOC’s adverse impact test for
measuring discrimination is 40 percent, so in an employment situation, a charge of discrimination
might result. (The adverse impact test gives 100-92=8 and 100-80=20; dividing 8 by 20 gives 40
percent.)

A greater percentage of Instant Checkmate ads with the word arrest in ad text appeared for black-
identifying first names than for white-identifying first names within professional and netizen
subsets, too.

This study started with the hypothesis that no difference exists in the delivery of ads suggestive
of an arrest record based on searches of racially associated names. The findings reject this. A greater
percentage of ads using arrest in their text appeared for black-identifying first names than for white-
identifying first names in searches on Reuters.com, Google.com, and in subsets of the sample. On
Reuters.com, which hosts Google AdSense ads, a black-identifying name was 25 percent more likely
to generate an ad suggestive of an arrest record.

THREE ADDITIONAL OBSERVATIONS
The people behind the names used in this study are diverse. Political figures included State
Representatives Aisha Braveboy (arrest ad) and Jay Jacobs (neutral ad) of Maryland; Jill Biden (neutral
ad), wife of U.S. Vice President Joe Biden; and Claire McCaskill, whose campaign ad for the U.S.
Senate in Missouri appeared alongside an Instant Checkmate ad using the word arrest (figure 6).
Names mined from academic Web sites included graduate students, researchers, administrators, staff,
and accomplished academics, such as Amy Gutmann, president of the University of Pennsylvania
and chair of the U.S. Presidential Commission for the Study of Bioethical Issues. Dustin Hoffman
(arrest ad) was among the celebrity names used. A smorgasbord of athletes appeared, from local to
national fame (assorted neutral and arrest ads). The youngest person whose name was used in the
study was a missing 11-year-old black girl.

SEARCH ENGINES

14

More than 1,100 of the names harvested for this study were from PeekYou, with scores estimating
the name’s overall presence on the Web. As expected, celebrities get the highest scores of 10s and
9s. Only four names used here had a PeekYou score of 10, and 12 had a score of 9, including Dustin
Hoffman. Only two ads appeared for these high-scoring names; an abundance of ads appeared across
the remaining spectrum of PeekYou scores. It seems likely that the bid price needed to get an ad
placed first is greater for more well-known and popular names with higher PeekYou scores. Knowing
that very few high-scoring people were in the study and that ads appeared across the full spectrum
of PeekYou scores reduces concern about variations in bid prices.

Different Instant Checkmate ads sometimes appeared for the same person. About 200 names had
Instant Checkmate ads on both Reuters.com and Google.com, but only 42 of these names received
the same ad. The other 82 percent of names received different ads across the two sites. Search results
on Reuters.com for the 62 duplicate names that appeared in the study showed different ads for 37 of
them, the same ad for seven, and no ad for 18. At most, three distinct ads appeared across Reuters.
com and Google.com for the same name. Figure 7 shows the assortment of ads appearing for Latonya
Evans and Latisha Smith. Having different possible ad texts for a name reminds us that while Instant
Checkmate provided the ad texts, Google’s technology selected among the possible texts in deciding
which to display. In Figure 7, each name had ads both suggestive of arrest and not, though they both
had more ads suggestive of arrest than not.

MORE ABOUT THE PROBLEM
Why is this discrimination occurring? Is Instant Checkmate, Google, or society to blame? We
don’t yet know, but navigating the terrain requires further information about the inner workings
of Google AdSense. Google understands that an advertiser may not know which ad copy will work
best, so the advertiser may provide multiple templates for the same search string, and the “Google
algorithm” learns over time which ad text gets the most clicks from viewers. It does this by assigning
weights (or probabilities) based on the click history of each ad. At first, all possible ad texts are
weighted the same and are presumed equally likely to produce a click. Over time, as people click one
version of an ad more often than others, the weights change, so the ad text getting the most clicks

E R U G I F

E R U G I F

E R U G I F
E R U G I F
E R U G I F

E R U G I F

E R U G I F
E R U G I F
E R U G I F

E R U G I F

E R U G I F

E R U G I F

A B
Example Ads Displayed in Response to Search of “Claire McCaskill”

SEARCH ENGINES

15

eventually displays more frequently. This approach aligns the financial interests of Google, as the ad
deliverer, with the advertiser.

Did Instant Checkmate provide ad templates suggestive of arrest disproportionately to black-
identifying names? Or did Instant Checkmate provide roughly the same templates evenly across
racially associated names but users clicked ads suggestive of arrest more often for black-identifying
names? As mentioned earlier, during a conference call with the founders of Instant Checkmate and
their lawyer, the company’s representatives asserted that Instant Checkmate gave the same ad text to
Google for groups of last names (not first names) in its database; they expressed no other criteria for
name and ad selection.

Google uses cloud-caching strategies to deliver ads quickly. Might these strategies create a bias
toward templates previously loaded in the cloud cache? Is there a combination effect?

This study is a start, but more research is needed. To preserve research opportunities, I captured
additional results for 50 hits on 2,184 names across 30 Web sites serving Google Ads to learn
the underlying distributions of ad occurrences per name. While analyzing the data may prove
illuminating, in the end the basic message presented in this study does not change: there is
discrimination in delivery of these ads.

TECHNICAL SOLUTIONS
How can technology solve this problem? One answer is to change the quality scores of ads to

E R U G I F

E R U G I F

E R U G I F
E R U G I F
E R U G I F

E R U G I F

A A

A B

B B

B

E R U G I F

E R U G I F
E R U G I F
E R U G I F

E R U G I F

E R U G I F

Examples of Different Ad Copy Appearing for Different Names

SEARCH ENGINES

16

discount for unwanted bias. The idea is to measure realtime bias in an ad’s delivery and then
adjust the weight of the ad accordingly at auction. The general term for Google’s technology is ad
exchange. This approach integrates seamlessly into the way ad exchanges operate, allowing minimal
modifications to harmonize ad deliveries with societal norms; it generalizes to other ad exchanges
(not just Google’s); and, finally, it works regardless of the cause of the discrimination—advertiser bias
in placing ads or societal bias in selecting ads.

Discrimination, however, is at the heart of online advertising. Differential delivery is the very idea
behind it. For example, if young women with children tend to purchase baby products and retired
men with bass boats tend to purchase fishing supplies, and you know the viewer is one of these two
types, then it is more efficient to offer ads for baby products to the young mother and fishing rods to
the fisherman, not the other way around.

On the other hand, not all discrimination is desirable. Societies have identified groups of people
to protect from specific forms of discrimination. Delivering ads suggestive of arrest much more often
for searches of black-identifying names than for white-identifying names is an example of unwanted
discrimination, according to American social and legal norms. This is especially true because the ads
appear regardless of whether actual arrest records exist for the names in the company’s database.

The good news is that we can use the mechanics and legal criteria described earlier to build
technology that distinguishes between desirable and undesirable discrimination in ad delivery.
Key components are: (1) identifying affected groups; (2) specifying the scope of ads to assess; (3)
determining ad sentiment; and (4) testing for adverse impact.

1. Identifying affected groups. A set of predicates can be defined to identify members of protected
and comparison groups. Given an ad’s search string and text, a predicate returns true if the ad can
impact the group that is the subject of the predicate and returns false otherwise. Statistics of baby
names can identify first names for constructing race and gender groups and last names for grouping
some ethnicities. Special word lists or functions that report degree of membership may be helpful for
other comparisons.

In this study, ads appeared on searches of full names for real people, and first names assigned to
more black or white babies formed groups for testing. These black and white predicates evaluate to true
or false based on the first name of the search string.

2. Specifying the scope of ads to assess. The focus should be on those ads capable of impacting a
protected group in a form of discrimination prohibited by law or social norm. Protection typically
concerns the ability to give or withhold benefits, facilities, services, employment, or opportunities.
Instead of lumping all ads together, it is better to use search strings, ad texts or products, or URLs
that display with ads to decide which ads to assess.

This study assessed search strings of first and last names of real people, ads for public records, and
ads having a specific display URL (instantcheckmate.com), the latter being the most informative
because the adverse ads all had the same display URL.

Of course, the audience for the ads is not necessarily the people who are the subjects of the ads.
In this study, the audience is a person inquiring about the person whose name is the subject of the
ad. This distinction is important when thinking about the identity of groups that might be impacted
by an ad. Group membership is based on the ad’s search string and text. The audience may resonate
more with a distinctly positive or negative characterization of the group.

3. Determining ad sentiment. Originally associated with summarizing product and movie
reviews, sentiment analysis is an area of computer science that uses natural-language processing

SEARCH ENGINES

17

and text analytics to determine the overall attitude of a text.13 Sentiment analysis can measure
whether an ad’s search string and accompanying text have positive, negative, or neutral sentiment. A
literature search does not find any prior application to online ads, but a lot of research has been done
assessing sentiment in social media (sentiment140.com, for example, reports the sentiment of tweets,
which like advertisements have limited words).

In this study ads containing the word arrest or criminal were classified as having negative
sentiment, and ads without those words were classified as neutral.

4. Testing for adverse impact. Consider a table where columns are comparative groups, rows
are sentiment, and values are the number of ad impressions (the number of times an ad appears,
whether or not it is clicked). Ignore neutral ads. Comparing the percentage of ads having the same
positive or negative sentiment across groups reveals the degree to which one group may be impacted
more or less by the ad’s sentiment. A chi-square test can determine statistical significance, and the
adverse impact test used by the EEOC and the U.S. Department of Labor can indicate whether in
some circumstances the impact may lead to legal risks.

In this study the groups are black and white, and the sentiments are negative and neutral. Table
2 shows a summary chart. Of the 488 ads that appeared for the black group, 291 (or 60 percent) had
negative sentiment. Of the 638 ads displayed for the white group, 308 (or 48 percent) had negative
sentiment. The difference is statistically significant (c2(1)=14.32, p < 0.001) and has an adverse impact
measure of 40/52, or 77 percent.

An easy way of incorporating this analysis into an ad exchange is to decide which bias test is
critical (e.g., statistical significance or the adverse impact test) and then factor the test result into the
quality score for the ad at auction. For example, if we were to modify the ad exchange not to display
any ad with an adverse impact score of less than 80, which is the EEOC standard, then arrest ads
for blacks would sometimes appear, but would not be overly disproportionate to such ads for whites,
regardless of advertiser or click bias.

Though this study served as an example throughout, the approach generalizes to many other
forms of discrimination and combats other ways of fostering discrimination.

Suppose female names tend to get neutral ads such as “Buy now,” while male names tend to get
positive ads such as “Buy now. 50% off!” Or suppose black names tend to get neutral ads such as
“Looking for Ebony Jones,” while white names tend to get positive ads such as “Meredith Jones.
Fantastic!” Then the same analysis would suppress some occurrences of the positive ads so as not to
foster a discriminatory effect.

This approach does not stop the appearance of negative ads for a store placed by a disgruntled
customer or ads placed by competitors on brand names of the competition, unless these are deemed
to be protected groups.

Black White
Negative 291 60% 308 48%
Neutral 197 40% 330 52%
Positive -- --
Total 488 638

TABLE 2. Assessment of negative and neutral ads for black and white groups

SEARCH ENGINES

18

Nonprotected marketing discrimination can continue even to protected groups. For example,
suppose search terms associated with blacks tend to get neutral ads for some music artists, while
those associated with whites tend to get neutral ads for other music artists. All ads would appear
regardless of the disproportionate distribution because the ads would not be subject to suppression.

As a final example, this approach allows everyone to be negatively impacted as long as the impact
is roughly the same. Suppose all ads for public records on all names, regardless of race, were equally
suggestive of arrest and had almost the same number of impressions; then no ads suggestive of arrest
would be suppressed.

Computer scientist Cynthia Dwork and her colleagues have already been working on algorithms
that assure racial fairness.4 Their general notion is to make sure similar groups receive similar ads
in proportions consistent with the population. Utility is the critical concern with this direction
because not all forms of discrimination are bad, and unusual and outlier ads could be unnecessarily
suppressed. Still, their research direction looks promising.

In conclusion, this study demonstrates that technology can foster discriminatory outcomes, but it
also shows that technology can thwart unwanted discrimination.

ACKNOWLEDGMENTS

The author thanks Ben Edelman, Claudine Gay, Gary King, Annie Lewis, and weekly Topics in
Privacy participants (David Abrams, Micah Altman, Merce Crosas, Bob Gelman, Harry Lewis, Joe
Pato, and Salil Vadhan) for discussions; Adam Tanner for first suspecting a pattern; Diane Lopez
and Matthew Fox in Harvard’s Office of the General Counsel for making publication possible in the
face of legal threats; and Sean Hooley for editorial suggestions. Data from this study is available at
foreverdata.org and the IQSS Dataverse Network. Supported in part by NSF grant CNS-1237235 and a
gift from Google, Inc.

REFERENCES

1. �Barker R. 2003. The Social Work Dictionary (5th ed.). Washington, DC: NASW Press.
2. �Bertrand, M., Mullainathan, S. 2003. Are Emily and Greg more employable than Lakisha and

Jamal? A field experiment on labor market discrimination. NBER Working Paper No. 9873; .
3. �Central Hudson Gas & Electric Corp. v. Public Service Commission of New York. 1980. Supreme Court

of the United States, 447 U.S. 557.
4. �Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R. 2011. Fairness through awareness.

arXiv:1104.3913 [cs.CC]; http://arxiv.org/abs/1104.3913.
5. �Equal Employment Opportunity Commission. 2012. Consideration of arrest and conviction

records in employment decisions under Title VII of the Civil Rights Act of 1964. Washington,
DC. 915.002; http://www.eeoc.gov/laws/guidance/arrest_conviction.cfm.

6. �Equal Employment Opportunity Commission. 1978. Uniform guidelines on employee selection
procedures. Washington, DC.

7. �Fryer, R., Levitt, S. 2004. The causes and consequences of distinctively black names. The Quarterly
Journal of Economics 59(3); http://pricetheory.uchicago.edu/levitt/Papers/FryerLevitt2004.pdf.

8. �Glover, E; http://www.physiology.emory.edu/FIRST/ebony2.htm (archived at http://foreverdata.
org/onlineads).

9. �Google AdSense; http://google.com/adsense.

http://arxiv.org/abs/1104.3913
http://www.eeoc.gov/laws/guidance/arrest_conviction.cfm
http://pricetheory.uchicago.edu/levitt/Papers/FryerLevitt2004.pdf
http://www.physiology.emory.edu/FIRST/ebony2.htm
http://foreverdata.org/onlineads
http://foreverdata.org/onlineads
http://google.com/adsense

SEARCH ENGINES

19

10. �Google. Google announces first quarter 2011 financial results; http://investor.google.com/
earnings/2011/Q1_google_earnings.html.

11. �Harris, P., Keller, K. 2005. Ex-offenders need not apply: the criminal background check in hiring
decisions. Journal of Contemporary Criminal Justice 21(1): 6-30.

12. �Panel on Methods for Assessing Discrimination, National Research Council. 2004. Measuring
racial discrimination. Washington, DC: National Academy Press.

13. �Pang, B., Lee, L. 2004. A sentimental education: sentiment analysis using subjectivity
summarization based on minimum cuts. Proceedings of the 42nd Annual Meeting on Association for
Computational Linguistics.

14. Schneider, J. http://www.lehigh.edu/bio/jill.html (Archived at http://foreverdata.org/onlineads).
15. �Sweeney, L. 2013. Discrimination in online ad delivery. (For detailed results and analysis, see full

technical report archived at http://ssrn.com/abstract=2208240. Data, including Web pages and
ads, archived at http://foreverdata.org/onlineads).

16. �U.S. Commission on Civil Rights. 1970. Racism in America and how to combat it. Washington,
DC.

17. WebShot Command Line Server Edition. Version 1.9.1.1; http://www.websitescreenshots.com/.

LOVE IT, HATE IT? LET US KNOW
feedback@queue.acm.org

LATANYA SWEENEY (latanya@fas.harvard.edu) is professor of government and technology in residence
at Harvard University. She creates and uses technology to assess and solve societal, political, and
governance problems and teaches others how to do the same. She is also founder and director of the Data
Privacy Lab at Harvard. She earned her Ph.D. in computer science from MIT in 2001. More information
about her is available at latanyasweeney.org.
© 2013 ACM 1542-7730/13/0300 $10.00

http://investor.google.com/earnings/2011/Q1_google_earnings.html
http://investor.google.com/earnings/2011/Q1_google_earnings.html
http://www.lehigh.edu/bio/jill.html
http://foreverdata.org/onlineads
http://ssrn.com/abstract=2208240
http://foreverdata.org/onlineads
http://www.websitescreenshots.com/

DATABASES

1

Eventual Consistency Today:
Limitations, Extensions, and Beyond

How can applications be built on eventually consistent infrastructure given no guarantee of safety?

Peter Bailis and Ali Ghodsi, UC Berkeley

In a July 2000 conference keynote, Eric Brewer, now VP of engineering at Google and a professor
at the University of California, Berkeley, publicly postulated the CAP (consistency, availability, and
partition tolerance) theorem, which would change the landscape of how distributed storage systems
were architected.8 Brewer’s conjecture—based on his experiences building infrastructure for some
of the first Internet search engines at Inktomi—states that distributed systems requiring always-
on, highly available operation cannot guarantee the illusion of coherent, consistent single-system
operation in the presence of network partitions, which cut communication between active servers.
Brewer’s conjecture proved prescient: in the following decade, with the continued rise of large-scale
Internet services, distributed-system architects frequently dropped “strong” guarantees in favor of
weaker models—the most notable being eventual consistency.

Eventual consistency provides few guarantees. Informally, it guarantees that, if no additional
updates are made to a given data item, all reads to that item will eventually return the same value.
This is a particularly weak model. At no given time can the user rule out the possibility of inconsistent
behavior: the system can return any data and still be eventually consistent—as it might “converge” at
some later point. The only guarantee is that, at some point in the future, something good will happen.
Yet, despite this apparent lack of useful guarantees, scores of usable applications and profitable
businesses are built on top of eventually consistent infrastructure. How?

This article begins to answer this question by describing several notable developments in the
theory and practice of eventual consistency, with a focus on immediately applicable takeaways for
practitioners running distributed systems in the wild. As production deployments have increasingly
adopted weak consistency models such as eventual consistency, we have learned several lessons
about how to reason about, program, and strengthen these weak models.

We will primarily focus on three questions and some preliminary answers:
How eventual is eventual consistency? If the scores of system architects advocating eventual

consistency are any indication, eventual consistency seems to work “well enough” in practice. How
is this possible when it provides such weak guarantees? New prediction and measurement techniques
allow system architects to quantify the behavior of real-world eventually consistent systems. When verified via
measurement, these systems appear strongly consistent most of the time.

How should one program under eventual consistency? How can system architects cope with
the lack of guarantees provided by eventual consistency? How do they program without strong
ordering guarantees? New research enables system architects to deal with inconsistencies, either via external
compensation outside of the system or by limiting themselves to data structures that avoid inconsistencies
altogether.

Is it possible to provide stronger guarantees than eventual consistency without losing its
benefits? In addition to guaranteeing eventual consistency and high availability, what other

DATABASES

2

guarantees can be provided? Recent results show that it’s possible to achieve the benefits of eventual
consistency while providing substantially stronger guarantees, including causality and several ACID (atomicity,
consistency, isolation, durability) properties from traditional database systems while still remaining highly
available.

This article is not intended as a formal survey of the literature surrounding eventual consistency.
Rather, it is a pragmatic introduction to several developments on the cutting edge of our
understanding of eventually consistent systems. The goal is to provide the necessary background for
understanding both how and why eventually consistent systems are programmed, are deployed, and
have evolved, as well as where the systems of tomorrow are heading.

EVENTUAL CONSISTENCY: HISTORY AND CONCEPTS
Brewer’s CAP theorem dictates that it is impossible simultaneously to achieve always-on experience
(availability) and to ensure that users read the latest written version of a distributed database
(consistency—as formally proven, a property known as “linearizability”11) in the presence of partial
failure (partitions).8 CAP pithily summarizes tradeoffs inherent in decades of distributed-system
designs (e.g., RFC 67714 from 1975) and shows that maintaining an SSI (single-system image) in a
distributed system has a cost10. If two processes (or groups of processes) within a distributed system
cannot communicate (are partitioned)—either because of a network failure or the failure of one of the
components—then updates cannot be synchronously propagated to all processes without blocking.
Under partitions, an SSI system cannot safely complete updates and hence is unavailable to some or
all of its users. Moreover, even without partitions, a system that chooses availability over consistency
enjoys benefits of low latency: if a server can safely respond to a user’s request when it is partitioned
from all other servers, then it can also respond to a user’s request without contacting other servers
even when it is able to do so.1 (Note that you can’t “sacrifice” partition tolerance!12 The choice is
between consistency and availability.)

As services are increasingly replicated to provide fault tolerance (ensuring that services remain
online despite individual server failures) and capacity (to allow systems to scale with variable request
rates), architects must face these consistency-availability and consistency-latency tradeoffs head on.
In a dynamic, partitionable Internet, services requiring guaranteed low latency must often relax their
expectations of data consistency.

EVENTUAL CONSISTENCY AS AN AVAILABLE ALTERNATIVE

Given the CAP impossibility result, distributed-database designers sought weaker consistency
models that would enable both availability and high performance. While weak consistency has been
studied and deployed in various forms since the 1970s,19 the eventual consistency model has become
prominent, particularly among emerging, highly scalable NoSQL stores.

One of the earliest definitions of eventual consistency comes from a 1988 paper describing a group
communication system15 not unlike a shared text editor such as Google Docs today: “…changes made
to one copy eventually migrate to all. If all update activity stops, after a period of time all replicas
of the database will converge to be logically equivalent: each copy of the database will contain, in a
predictable order, the same documents; replicas of each document will contain the same fields.”

Under eventual consistency, all servers eventually “converge” to the same state; at some point
in the future, servers are indistinguishable from one another. This eventual convergence, however,

DATABASES

3

does not provide SSI semantics. First, the “predictable order” will not necessarily correspond to an
execution that could have arisen under SSI; eventual consistency does not specify which value is
eventually chosen. Second, there is an unspecified window before convergence is reached, during
which the system will not provide SSI semantics, but rather arbitrary values. As will be seen shortly,
this promise of eventual convergence is a rather weak property. Finally, a system with SSI provides
eventual consistency—the “eventuality” is immediate—but not vice versa.

Why is eventual consistency useful? Pretend you are in charge of the data infrastructure at a social
network where users post new status updates that are sent to their followers’ timelines, represented
by separate lists—one per user. Because of large scale and frequent server failures, the database of
timelines is stored across multiple physical servers. In the event of a partition between two servers,
however, you cannot deliver each update to all timelines. What should you do? Should you tell
the user that he or she cannot post an update, or should you wait until the partition heals before
providing a response? Both of these strategies choose consistency over availability, at the cost of user
experience.

Instead, what if you propagate the update to the reachable set of followers’ timelines, return
to the user, and delay delivering the update to the other followers until the partition heals? In
choosing this option, you give up the guarantee that all users see the same set of updates at every
point in time (and admit the possibility of timeline reordering as partitions heal), but you gain
high availability and (arguably) a better user experience. Moreover, because updates are eventually
delivered, all users eventually see the same timeline with all of the updates that users posted.

IMPLEMENTING EVENTUAL CONSISTENCY

A key benefit of eventual consistency is that it is fairly straightforward to implement. To ensure
convergence, replicas must exchange information with one another about which writes they have
seen. This information exchange is often called anti-entropy, a homage to the process of reversing
entropy, or thermodynamic randomness, in a physical system.19 Protocols for achieving anti-entropy
take a variety of forms; one simple solution is to use an asynchronous all-to-all broadcast: when a
replica receives a write to a data item, it immediately responds to the user, then, in the background,
sends the write to all other replicas, which in turn update their locally stored data items. In the event
of concurrent writes to a given data item, replicas deterministically choose a “winning” value, often
using a simple rule such as “last writer wins” (e.g., via a clock value embedded in each write).22

Suppose you want to make a single-node database into an eventually consistent distributed
database. When you get a request, you route it to any server you can contact. When a server performs
a write to its local key-value store, it can send the write to all other servers in the cluster. This write-
forwarding becomes the anti-entropy process. Be careful, however, when sending the write to the
other servers. If you wait for other servers to respond before acknowledging the local write, then,
if another server is down or partitioned from you, the write request will hang indefinitely. Instead,
you should send the request in the background; anti-entropy should be an asynchronous process.
Implicitly, the model for eventual consistency assumes that system partitions are eventually healed
and updates are eventually propagated, or that partitioned nodes eventually die and the system ends
up operating in a single partition.

The eventually consistent system has some great properties. It does not require writing difficult
“corner-case” code to deal with complicated scenarios such as downed replicas or network

DATABASES

4

partitions—anti-entropy will simply stall—or writing complex code for coordination such as master
election. All operations complete locally, meaning latency will be bounded. In a geo-replicated
scenario, with replicas located in different data centers, you don’t have to endure long-haul wide-area
network latencies on the order of hundreds of milliseconds on the request fast path. The mechanism
just described, returning immediately on the local write, can put data durability at risk. An
intermediate point in trading between durability and availability is to return after W replicas have
acknowledged the write, thus allowing the write to survive W-1 replica failures. Anti-entropy can be
run as often or as rarely as desired without violating any guarantees. What’s not to like?

SAFETY AND LIVENESS

While eventual consistency is relatively easy to achieve, the current definition leaves some
unfortunate holes. First, what is the eventual state of the database? A database always returning
the value 42 is eventually consistent, even if 42 was never written. Amazon CTO Werner Vogels’
preferred definition specifies that “eventually all accesses return the last updated value”; accordingly,
the database cannot converge to an arbitrary value.23 Even this new definition has another problem:
what values can be returned before the eventual state of the database is reached? If replicas have not
yet converged, what guarantees can be made about the data returned?

These questions stem from two kinds of properties possessed by all distributed systems: safety
and liveness.2 A safety property guarantees that “nothing bad happens;” for example, every value
that is read was, at some point in time, written to the database. A liveness property guarantees that
“something good eventually happens”; for example, all requests eventually receive a response.

The difficulty with eventual consistency is that it makes no safety guarantees—eventual consistency
is purely a liveness property. Something good eventually happens—the replicas agree—but there
are no guarantees with respect to what happens, and no behavior is ruled out in the meantime! For
meaningful guarantees, safety and liveness properties need to be taken together: without one or the
other, you can have trivial implementations that provide less-than-satisfactory results.

Virtually every other model that is stronger than eventual provides some form of safety
guarantees. For almost all production systems, however, eventual consistency should be considered
a bare-minimum requirement for data consistency. A system that does not guarantee replica
convergence is remarkably difficult to reason about.

HOW EVENTUAL IS EVENTUAL CONSISTENCY?
Despite the lack of safety guarantees, eventually consistent data stores are widely deployed. Why?
While eventually consistent stores don’t promise safety, there is evidence that eventual consistency
works well in practice. Eventual consistency is “good enough,” given its latency and availability
benefits. For the many stores that offer a choice between eventual consistency and stronger
consistency models, scores of practitioners advocate eventual consistency.

The behavior of eventually consistent stores can be quantified. Just because eventual consistency
doesn’t promise safety doesn’t mean safety isn’t often provided—and you can both measure and
predict these properties of eventually consistent systems using a range of techniques that have
recently been developed and are making their way to production stores. These techniques—which
we discuss next—have surprisingly shown that eventual consistency often behaves like strong
consistency in production stores.

DATABASES

5

METRICS AND MECHANISMS

One common metric for eventual consistency is time: how long will it take for writes to become visible
to readers? This captures the “window of consistency” measured according to the wall clock. Another
metric is versions: how many versions old will a given read be? This information can be used to ensure
that readers never go back in time, but always observe progressively newer versions of the database.
While time and versions are perhaps the most intuitive metrics, there are a range of others, such as
numerical drift from the “true” value of each data item and various combinations of these metrics.25

The two main kinds of mechanisms for quantifying eventual consistency are measurement and
prediction. Measurement answers the question, “How consistent is my store under my given workload
right now?”18 while prediction answers the question, “How consistent will my store be under a given
configuration and workload?”4 Measurement is useful for runtime monitoring and alerts or verifying
compliance with SLOs (service-level objectives). Prediction is useful for probabilistic what-if analyses
such as the effect of configuration and workload changes and for dynamically tuning system
behavior. Taken together, measurement and prediction form a useful toolkit.

PROBABILISTICALLY BOUNDED STALENESS

As a brief deep dive into how to quantify eventually consistent behavior, we will discuss our
experiences developing, deploying, and integrating state-of-the art prediction techniques into
Cassandra, a popular NoSQL. Probabilistically Bounded Staleness, or PBS, provides an expectation of
recency for reads of data items.4 This allows us to measure how far an eventually consistent store’s
behavior deviates from that of a strongly consistent, linearizable (or regular) store. PBS enables
metrics of the form: “100 milliseconds after a write completes, 99.9 percent of reads will return the
most recent version,” and “85 percent of reads will return a version that is within two of the most
recent.”

BUILDING PBS

How does PBS work? Intuitively, the degree of inconsistency is determined by the rate of anti-
entropy. If replicas constantly exchange their last-written writes, then the window of inconsistency
should be bounded by the network delay and local processing delay at each node. If replicas delay
anti-entropy (possibly to save bandwidth or processing time), then this delay is added to the window
of inconsistency; many systems (Amazon’s Dynamo, for example) offer settings in the replication
protocol to control these delays. Given the anti-entropy protocol, then—given the configured
anti-entropy rate, the network delay, and local processing delay—you can calculate the expected
consistency. In Cassandra, we piggyback timing information on top of the write distribution
protocol (the primary source of anti-entropy) and maintain a running sample. When a user wants
to know the effect of a given replication configuration, we use the collected sample in a Monte Carlo
simulation of the protocol to return an expected value for the consistency of the data store, which
closely matches consistency measurements on our Cassandra clusters at Berkeley.

PBS IN THE WILD

Using our PBS consistency prediction tool, and with the help of several friends at LinkedIn and
Yammer, we quantified the consistency of three eventually consistent stores running in production.
PBS models predicted that LinkedIn’s data stores returned consistent data 99.9 percent of the

DATABASES

6

time within 13.6 ms, and on SSDs (solid-state drives) within 1.63 ms. These eventually consistent
configurations were 16.5 percent and 59.5 percent faster than their strongly consistent counterparts
at the 99.9th percentile. Yammer’s data stores experienced a 99.9 percent inconsistency window of
202 ms at 81.1 percent latency reduction. The results confirmed the anecdotal evidence: eventually
consistent stores are often faster than their strongly consistent counterparts, and they are frequently
consistent within tens or hundreds of milliseconds.

In order to make consistency prediction more accessible, with the help of the Cassandra
community, we recently released support for PBS predictions in Cassandra 1.2.0. Cassandra users
can now run predictions on their own production clusters to tune their consistency parameters and
perform what-if analyses for normal-case, failure-free operation. For example, to explore the effect
of adding SSDs to a set of servers, users can adjust the expected distribution of read and write speeds
on the local node. These predictions are inexpensive; a JavaScript-based demonstration we created4

completes tens of thousands of trials in less than a second.
Of course, prediction is not without faults: predictions are only as good as the underlying model

and input data. As statistician George E.P. Box famously stated, “All models are wrong, but some are
useful.” Failure to account for an important aspect of the system or anti-entropy protocol may lead
to inaccurate predictions. Similarly, prediction works by assuming that past behavior is correlated
with future behavior. If environmental conditions change, predictions may be of limited accuracy.
These issues are fundamental to the problem at hand, and they are a reminder that prediction is best
paired with measurement to ensure accuracy.

EVENTUAL CONSISTENCY IS OFTEN STRONGLY CONSISTENT

In addition to PBS, several recent projects have verified the consistency of real-world eventually
consistent stores. One study found that Amazon SimpleDB’s inconsistency window for eventually
consistent reads was almost always less than 500 ms,24 while another study found that Amazon S3’s
inconsistency window lasted up to 12 seconds.7 Other recent work shows results similar to those
presented for PBS, with Cassandra closing its inconsistency window within around 200 ms.18

These results confirm the anecdotal evidence that eventual consistency is often “good enough”
by providing quantitative metrics for system behavior. As techniques such as PBS and consistency
measurement continue to make their way into more production infrastructure, reasoning about the
behavior of eventual consistency across deployments, failures, and system configurations will be
increasingly straightforward.

PROGRAMMING EVENTUAL CONSISTENCY
While users can verify and predict the consistency behavior of eventually consistent systems, these
techniques do not provide absolute guarantees against safety violations. What if an application
requires that safety is always respected? There is a growing body of knowledge about how to program
and reason about eventually consistent stores.

COMPENSATION, COSTS, AND BENEFITS

Programming around consistency anomalies is similar to speculation: you don’t know what the
latest value of a given data item is, but you can proceed as if the value presented is the latest. When
you’ve guessed wrong, you have to compensate for any incorrect actions taken in the interim.

DATABASES

7

In effect, compensation is a way to achieve safety retroactively—to restore guarantees to users.13
Compensation ensures that mistakes are eventually corrected but does not guarantee that no
mistakes are made.

As an example of speculation and compensation, consider running an ATM machine.8,13 Without
strong consistency, two users might simultaneously withdraw money from an account and end up
with more money than the account ever held. Would a bank ever want this behavior? In practice,
yes. An ATM’s ability to dispense money (availability) outweighs the cost of temporary inconsistency
in the event that an ATM is partitioned from the master bank branch’s servers. In the event of
overdrawing an account, banks have a well-defined system of external compensating actions: for
example, overdraft fees charged to the user. Banking software is often used to illustrate the need
for strong consistency, but in practice the socio-technical system of the bank can deal with data
inconsistency just as well as with other errors such as data-entry mistakes.

An application designer deciding whether to use eventual consistency faces a choice. In effect,
the designer needs to weigh the benefit of weak consistency B (in terms of high availability or low
latency) against the cost C of each inconsistency anomaly multiplied by the rate of anomalies R:

maximize B-CR

This decision is, by necessity, application- and deployment-specific. The cost of anomalies is
determined by the cost of compensation: too many overdrafts might cause customers to leave a
bank, while too-slow propagation of status updates might cause users to leave a social network.
The rate of anomalies—as seen before—depends on the system architecture, configuration, and
deployment. Similarly, the benefit of weak consistency is itself possibly a compound term composed
of factors such as the incidence of communication failures and communication latency.

Second, application designers actually have to design for compensation. Writing corner-case
compensation code is nontrivial. Determining the correct business application logic to handle each
type of consistency anomaly is a difficult task. Carefully reasoning about each possible sequence of
anomalies and the correct “apologies” to make to the user for each can become more onerous than
designing a solution for strong consistency. In general, when the cost of inconsistency is high, with
tangible monetary consequences (e.g., ATMs), compensation is more likely to be well thought out.
Additionally, depending on the application, it is possible that some compensation protocols already
exist. For example, even if a database is perfectly consistent, a forklift may run over a pallet of
inventory in a warehouse or packages may be lost in transit.13

For some applications, however, the rate of anomalies may be low enough or the cost of
inconsistency may be small enough that the application designer may choose to forgo including
compensation entirely. If the chance of inconsistency is sufficiently low, users may experience
anomalies in only a small number of cases. Anecdotally, many online services such as social
networking largely operate with weakly consistent configurations: if a user’s status update takes
seconds or even minutes to propagate to followers, they are unlikely to notice or even care. The
complexities of operating a strongly consistent service at this scale may outweigh the benefit of, say,
preventing an off-by-one error in Justin Bieber’s follower count on Twitter.

DATABASES

8

COMPENSATION BY DESIGN

Compensation is error-prone and laborious, and it exposes the programmer (and sometimes the
application) to the effects of replication. What if you could program without it? Recent research has
provided “compensation-free” programming for many eventually consistent applications.

The formal underpinnings of eventually consistent programs that are consistent by design are
captured by the CALM theorem, indicating which programs are safe under eventual consistency
and also (conservatively) which aren’t.3 Formally, CALM means consistency as logical monotonicity;
informally, it means that programs that are monotonic, or compute an ever-growing set of facts (by,
e.g., receiving new messages or performing operations on behalf of a client) and do not ever “retract”
facts that they emit (i.e., the basis for decisions the program has already made doesn’t change), can
always be safely run on an eventually consistent store. (Full disclosure: CALM was developed by our
colleagues at UC Berkeley). Accordingly, CALM tells programmers which operations and programs
can guarantee safety when used in an eventually consistent system. Any code that fails CALM tests is
a candidate for stronger coordination mechanisms.

As a concrete example of this logical monotonicity, consider building a database for queries on
stock trades. Once completed, trades cannot change, so any answers that are based solely on the
immutable historical data will remain true. However, if your database keeps track of the value of the
latest trade, then new information—such new stock prices—might retract old information, as new
stock prices overwrite the latest ones in the database. Without coordination between replica copies,
the second database might return inconsistent data.

By analyzing programs for monotonicity, you can “bless” monotonic programs as “safe” under
eventual consistency and encourage the use of coordination protocols (i.e., strong consistency)
in the presence of non-monotonicity. As a general rule, operations such as initializing variables,
accumulating set members, and testing a threshold condition are monotonic. In contrast, operations
such as variable overwrites, set deletion, counter resets, and negation (e.g., “there does not exist a
trade such that…”) are generally not logically monotonic.

CALM captures a wide space of design patterns sometimes referred to as ACID 2.0 (associativity,
commutativity, idempotence, and distributed)13. Associativity means that you can apply a function in
any order:

f(a, f(b, c)) = f(f(a,b),c)
Commutativity means that a function’s arguments are order-insensitive:
 f(a,b) = f(b,a)
Commutative and associative programs are order-insensitive and can tolerate message re-ordering, as
in eventual consistency. Idempotence means you can call a function on the same input any number
of times and get the same result:
 f(f(x))=f(x) (e.g., max(42, max(42, 42)) = 42)
Idempotence allows the use of at-least-once message delivery, instead of at-most-once delivery (which
is more expensive to guarantee). Distributed is primarily a placeholder for D in the acronym (!) but
symbolizes the fact that ACID 2.0 is all about distributed systems. Carefully applying these design
patterns can achieve logical monotonicity.

Recent work on CRDTs (commutative, replicated data types) embodies CALM and ACID 2.0
principles within a variety of standard data types, providing provably eventually consistent data
structures including sets, graphs, and sequences.20 Any program that correctly uses these predefined,
well-specified data structures is guaranteed to never produce any safety violations.

DATABASES

9

To understand CRDTs, consider building an increment-only counter that is replicated on two
servers. We might implement the increment operation by first reading the counter’s value on one
replica, incrementing the value by one, and writing the new value back on every replica. If the
counter is initially at 0 and two different users simultaneously initiate increment operations on
separate servers, both users may read 0 and then distribute the value 1 to the replicas; the counter
ends up with a value of 1 instead of the correct value of 2. Instead, we can use a G-counter CRDT,
which relies on the fact that increment is a commutative operation—it doesn’t matter in what
order the two increment operations are applied, as long as they are both eventually applied at all
sites. With a G-counter, the current counter status is represented as the count of distinct increment
invocations, similar to how counting is introduced at the grade-school level: by making a tally mark
for every increment then summing the total. In our example, instead of reading and writing counter
values, each invocation distributes an increment operation. All replicas end up with two increment
operations, which sum to the correct value of 2. This works because the replicas understand the
semantics of increment operations instead of providing general-purpose read/write operations, which
are not commutative.

A key property of these advances is that they separate data store and application-level consistency
concerns. While the underlying store may return inconsistent data at the level of reads and writes,
CALM, ACID 2.0, and CRDT appeal to higher-level consistency criteria, typically in the form of
application-level invariants that the application maintains. Instead of requiring that every read
and write to and from the data store is strongly consistent, the application simply has to ensure
a semantic guarantee (such as “the counter is strictly increasing”)—granting considerable leeway
in how reads and writes are processed. This distinction between application-level and read/
write consistency is often ambiguous and poorly defined (for example, what does database ACID
“consistency” have to do with “strong consistency”?). Fortunately, by identifying a large class of
programs and data types that are tolerant of weak consistency, programmers can enjoy “strong”
application consistency, while reaping the benefits of “weak” distributed read/write consistency.

Taken together, the CALM theorem and CRDTs make a powerful toolkit for achieving “consistency
without concurrency control,” which is making its way into real-world systems. Our team’s work
on the Bloom language3 embodies CALM principles. Bloom encourages the use of order-insensitive
disorderly programming, which is key to architecting eventually consistent systems. Some of our
recent work focuses on building custom eventually consistent data types whose correctness is
grounded in formal mathematical lattice theory. Concurrently, several open source projects such
as Statebox21 provide CRDT-like primitives as client-side extensions to eventually consistent stores,
while one eventually consistent store—Riak—recently announced alpha support for CRDTs as a first-
class server-side primitive.9

STRONGER THAN EVENTUAL
While compensating actions and CALM/CRDTs provide a way around eventual consistency, they
have shortcomings of their own. The former requires dealing with inconsistencies outside the system
and the latter limits the operations that an application writer can employ. However, it turns out that
it is possible to provide even stronger guarantees than eventual consistency—albeit weaker than
SSI—for general-purpose operations while still providing availability.

The CAP theorem dictates that strong consistency (SSI) and availability are unachievable in the

DATABASES

10

presence of partitions. But how weak does the consistency model have to be in order for it to be
available? Clearly, eventual consistency, which simply provides a liveness guarantee, is available. Is
it possible to strengthen eventual consistency by adding safety guarantees to it without losing its
benefits?

PUSHING THE LIMITS

A recent technical report from the University of Texas at Austin claims that no consistency model
stronger than causal consistency is available in the presence of partitions.17 Causal consistency
guarantees that each process’s writes are seen in order, that writes follow reads (if a user reads a value
A=5 and then writes B=10, then another user cannot read B=10 and subsequently read an older
value of A than 5), and that transitive data dependencies hold. This causal consistency is useful in
making sure, for example, that comment threads are seen in the correct order, without dangling
replies, and that users’ privacy settings are applied to the appropriate data. The UT Austin report
demonstrates that it is not possible to have a stronger model than causal consistency (that accepts
fewer outcomes) without either violating high availability or giving up the assurance that, if two
servers communicate, they will agree on the same set of values for their data items. While many
other available models are neither stronger nor weaker than causal consistency, this impossibility
result is useful because it places an upper bound on a very familiar consistency model.

Especially in light of this result, it is worth noting that several new data storage designs provide
causal consistency. The COPS and Eiger systems16 developed by a team from Princeton, CMU, and
Intel Research provide causal consistency without incurring high latencies across geographically
distant datacenters or the loss of availability in the event of datacenter failures. These systems
perform particularly well, at a near-negligible cost to performance when compared to eventual
consistency; Eiger, which was prototyped within the Cassandra system, incurs less than 7% overhead
for one of Facebook’s workloads. In our recent work, we demonstrated how existing data stores
that are already deployed in production but provide eventual consistency can be augmented with
causality as an added safety guarantee.6 Causality can be bolted-on without compromising high
availability, enabling system designs in which safety and liveness are cleanly decomposed into
separate architectural layers.

In addition to causality, we can consider the relationship between ACID transactions and the
CAP theorem. While it’s impossible to provide the gold standard of ACID isolation—serializability,
or SSI—it turns out that many ACID databases provide a weaker form of isolation, such as read
committed, often by default and, in some cases, as the maximum offered. Some of our recent
results show that many of these weaker models can be implemented in a distributed environment
while providing high availability.5 Current databases providing these weak isolation models are
unavailable, but this is only because they have been implemented with unavailable algorithms.

We—and several others—are developing transactional algorithms that show this need not be the
case. By rethinking the concurrency-control mechanisms and re-architecting distributed databases
from the ground up, we can provide safety guarantees in the form of transactional atomicity, ANSI
SQL Read Committed and Repeatable Read, and causality between transactions—matching many
existing ACID databases—without violating high availability. This is somewhat surprising, as many
in the past have assumed that, in a highly available system, arbitrary multi-object transactions are
out of the question.

DATABASES

11

RECOGNIZING THE LIMITS

While these results push the limits of what is achievable with high availability, there are several
properties that a weakly consistent system will never be able to provide; there is a fundamental cost
to remaining highly available (and providing guaranteed low latency). The CAP theorem states that
staleness guarantees are impossible in a highly available system. Reads that specify a constraint
on data recency (e.g., “give me the latest value” or “give me the latest value as of 10 minutes ago”)
are not generally available in the presence of long-lasting network partitions. Similarly, we cannot
maintain arbitrary global correctness constraints over sets of data items such as uniqueness
requirements (e.g., “create bank account with ID 50 if the account does not exist”) and, in certain
cases (e.g., arbitrary reads and writes), even correctness constraints on individual data items are
not achievable (e.g., “the bank account balance should be non-negative”). These challenges are an
inherent cost of choosing weak consistency—whether eventual or a stronger but still “weak” model.

CONCLUSIONS
By simplifying the design and operation of distributed services, eventual consistency improves
availability and performance at the cost of semantic guarantees to applications. While eventual
consistency is a particularly weak property, eventually consistent stores often deliver consistent data,
and new techniques for measurement and prediction grant us insight into the behavior of eventually
consistent stores. Concurrently, new research and prototypes for building eventually consistent
data types and programs are easing the burden of reasoning about disorder in distributed systems.
These techniques, coupled with new results that push the boundaries of highly available systems—
including causality and transactions—make a strong case for the continued adoption of weakly
consistent systems. While eventual consistency and its weakly consistent cousins are not perfect for
every task, their performance and availability will likely continue to accrue admirers and advocates
in the future.

ACKNOWLEDGMENTS

The authors would like to thank Peter Alvaro, Carlos Baquero, Neil Conway, Alan Fekete, Joe
Hellerstein, Marc Shapiro, and Ion Stoica for feedback on earlier drafts of this article.

This work was supported by gifts from Google, SAP, Amazon Web Services, Blue Goji, Cloudera,
Ericsson, General Electric, Hewlett Packard, Huawei, IBM, Intel, MarkLogic, Microsoft, NEC Labs,
NetApp, NTT Multimedia Communications Laboratories, Oracle, Quanta, Splunk, and VMware.
This material is based upon work supported by the National Science Foundation Graduate Research
Fellowship under Grant DGE 1106400, National Science Foundation Grants IIS-0713661, CNS-
0722077, and IIS-0803690, the Air Force Office of Scientific Research Grant FA95500810352, and
DARPA contract FA865011C7136.

REFERENCES

1. �Abadi, D. 2012. Consistency tradeoffs in modern distributed database system design: CAP is only
part of the story. IEEE Computer (February).

2. �Alpern, B., Schneider, F.B. 1985. Defining liveness. Information Processing Letters 21 (October).
3. �Alvaro, P., Conway, N., Hellerstein, J., Marczak, W. 2011. Consistency analysis in Bloom: a CALM

and collected approach. CIDR (Conference on Innovative Data Systems Research).

DATABASES

12

4. �Bailis, P., Venkataraman, S., Franklin, M., Hellerstein, J., Stoica, I. 2012. Probabilistically bounded
staleness for practical partial quorums. VLDB (Very Large Databases). (Demo from text: http://
pbs.cs.berkeley.edu/#demo)

5. �Bailis, P., Fekete, A., Ghodsi, A., Hellerstein, J., Stoica, I. 2013. HAT, not CAP: highly available
transactions. arXiv:1302.0309 [cs.DB] (February).

6. �Bailis, P., Ghodsi, A., Hellerstein, J., Stoica, I. 2013. Bolt-on causal consistency. ACM SIGMOD.
7. �Bermbach, D., Tai, S. 2011. Eventual consistency: how soon is eventual? An evaluation of Amazon

S3’s consistency behavior. MW4SOC (Workshop on Middleware for Service-oriented Computing).
8. �Brewer, E. 2012. CAP twelve years later: how the “rules” have changed. IEEE Computer

(February).
9. �Brown, R., Cribbs, S. 2012. Data structures in Riak; https://speakerdeck.com/basho/data-

structures-in-riak. RICON Conference.
10. �Davidson, S., Garcia-Molina, H., Skeen, D. 1985. Consistency in a partitioned network: a survey.

ACM Computing Surveys Volume 17, Issue 3.

11. �Gilbert, S., Lynch. N. 2002. Brewer’s conjecture and the feasibility of consistent, available,

partition-tolerant web services. ACM SIGACT News Volume 33, Issue 2 (June).

12. �Hale, C. 2010. You can’t sacrifice partition tolerance. http://codahale.com/you-cant-sacrifice-

partition-tolerance/

13. �Helland, P., Campbell, D. 2009. Building on quicksand. CIDR (Conference on Innovative Data

Systems Research).

14. �Johnson, P. R., Thomas, R. H. 1975. Maintenance of duplicate databases; RFC 677; http://www.

faqs.org/rfcs/rfc677.html.
15. �Kawell Jr., L., Beckhardt, S., Halvorsen, T., Ozzie, R., Greif, I. 1988. Replicated document

management in a group communication system. Proceedings of the 1988 ACM Conference on
Computer-supported Cooperative Work: 395; http://dl.acm.org/citation.cfm?id=1024798.

16. �Lloyd, W., Freedman, M., Kaminsky, M., Andersen, D. 2013. Stronger semantics for low-latency
geo-replicated storage. NSDI (Networked Systems Design and Implementation).

17. �Mahajan, P., Alvisi, L., Dahlin, M. 2011. Consistency, availability, convergence. University of
Texas at Austin TR-11-22 (May).

18. �Rahman, M., Golab, W., AuYoung, A., Keeton, K., Wylie, J. 2012. Toward a principled framework
for benchmarking consistency. HotDep (Workshop on Hot Topics in System Dependability).

19. �Saito, Y., Shapiro, M. 2005. Optimistic replication. ACM Computing Surveys Volume 37 Number
1 (March). http://dl.acm.org/citation.cfm?id=1057980

20. �Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M. 2011. A comprehensive study of convergent
and commutative replicated data types. INRIA Technical Report RR-7506 (January).

21. �Statebox; https://github.com/mochi/statebox.
22 �Terry, D., Theimer, M., Petersen, K., Demers, A., Spreitzer, M. Hauser, C. 1995. Managing update

conflicts in Bayou, a weakly connected replicated storage system. SOSP (Symposium on Operating
Systems Principles).

23. Vogels, W. Eventually consistent. 2008. ACM Queue.
24. �Wada, H., Fekete, A., Zhao, L., Lee, K., A. Liu, A. 2011. Data consistency and the tradeoffs in

commercial cloud storage: the consumers’ perspective. CIDR (Conference on Innovative Data
Systems Research).

DATABASES

13

25. �Yu, H., Vahdat, A. 2002. Design and evaluation of a conit-based continuous consistency model
for replicated services. ACM TOCS (Transactions on Computer Systems).

RECOMMENDED READING

Compensation and Stronger Models
�Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M. 2011. A comprehensive study of convergent and
commutative replicated data types. INRIA Technical Report RR-7506 (January). http://hal.upmc.fr/
docs/00/55/55/88/PDF/techreport.pdf
�Terry, D. 2011. Replicated data consistency explained through baseball. Microsoft Research Technical
Report MSR-TR-2011-137 (October). http://research.microsoft.com/apps/pubs/default.aspx?id=157411
�Saito, Y., Shapiro, M. 2005. Optimistic Replication. ACM Computing Surveys Volume 37 Number 1
(March). http://dl.acm.org/citation.cfm?id=1057980
Helland, P., Campbell, D. 2009. Building on quicksand. CIDR (Conference on Innovative Data
Systems Research). http://www-db.cs.wisc.edu/cidr/cidr2009/Paper_133.pdf

CAP and Latency-Consistency Background
Abadi, D.J. 2012. Consistency tradeoffs in modern distributed database system design: CAP is only
part of the story. IEEE Computer (February). http://cs-www.cs.yale.edu/homes/dna/papers/abadi-
pacelc.pdf
Brewer, E. 2012. CAP twelve years later: how the “rules” have changed. IEEE Computer (February).
http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

Portions of this piece (in particular, the safety and liveness discussion) originally appeared at http://bailis.org/
blog.

LOVE IT, HATE IT? LET US KNOW
feedback@queue.acm.org

PETER BAILIS is a graduate student of Computer Science in the AMPLab and BOOM projects at UC Berkeley,

where he works closely with Ali Ghodsi, Joe Hellerstein, and Ion Stoica. He currently studies distributed

systems and databases, with a particular focus on distributed consistency models. Peter received his A.B. from

Harvard College and is the recipient of the NSF Graduate Research Fellowship and the Berkeley Fellowship

for Graduate Study. Peter blogs regularly at http://bailis.org/blog and tweets as @pbailis.

ALI GHODSI is an Assistant Professor at KTH/Royal Institute of Technology in Sweden and a Visiting

Researcher at UC Berkeley since 2009. His general interests are in the broader areas of distributed systems and

networking. He received his PhD in 2006 from KTH/Royal Institute of Technology in the area of Distributed

Computing. He can be reached at alig@cs.berkeley.edu.

© 2013 ACM 1542-7730/13/0300 $10.00

FILE SYSTEMS AND STORAGE

1

A File System All Its Own

Flash memory has come a long way. Now it’s time for software to catch up.

Adam H. Leventhal

In the past five years, flash memory has progressed from a promising accelerator,7 whose place in
the data center was still uncertain, to an established enterprise component for storing performance-
critical data4,9. It’s rise to prominence followed its proliferation in the consumer world and the
volume economics that followed (see figure 1). With SSDs (solid-state devices), flash arrived in a form
optimized for compatibility—just replace a hard drive with an SSD for radically better performance.
But the properties of the NAND flash memory used by SSDs differ significantly from those of the
magnetic media in the hard drives they often displace.2 While SSDs have become more pervasive
in a variety of uses, the industry has only just started to design storage systems that embrace the
nuances of flash memory. As it escapes the confines of compatibility, significant improvements in
performance, reliability, and cost are possible.

0.01

0.1

1

10

100

1,000

10,000

pr
ic

e
pe

r g
ig

ab
yt

e
($

)

2001 2010 20112002 2003 2004 2005 2006 2007 2008 2009

DRAM
SLC NAND
MLC NAND
HDD

Price Trends in the Storage Hierarchy

Source: Objective Analysis

FILE SYSTEMS AND STORAGE

2

The native operations of NAND flash memory are quite different from those required of a
traditional block device. The FTL (flash translation layer), as the name suggests, translates the block-
device commands into operations on flash memory. This translation is by no means trivial; both
the granularity and the fundamental operations differ. SSD controllers compete in subspecialties
such as garbage collection, write amplification, wear leveling, and error correction.2 The algorithms
used by modern SSDs are growing increasingly sophisticated despite the seemingly simple block-
read and block-write operations that they must support. A very common use of a block device is to
host a file system. File systems, of course, perform their own type of translation: from file creations,
opens, reads, and writes within a directory hierarchy to block reads and writes. There’s nothing
innate about file-system operations that makes them well served by the block interface; it’s just the
dominant standard for persistent storage, and it has existed for decades.

Layering the file system translation on top of the flash translation is inefficient and impedes
performance. Sophisticated applications such as databases have long circumvented the file system—
again, layers upon layers—to attain optimal performance. The information lost between abstraction
layers impedes performance, longevity, and capacity. A file system may “know” that a file is being
copied, but the FTL sees each copied block as discrete and unique. File systems also optimize for the
physical realities of a spinning disk, but placing data on the sectors that spin the fastest doesn’t make
sense when they don’t spin at all. Volume managers, software that presents collections of disks as a
block device, led to similar inefficiencies in disk-based storage, obscuring information from the file
system.

Modern file systems such as WAFL (Write Anywhere File Layout)5 ZFS, and Btrfs (B-tree file
system)1 integrated the responsibilities previously assigned to volume managers and reorganized
the layers of abstraction. The resulting systems were more efficient and easier to manage. Poorly
optimized software mattered when operations were measured in milliseconds; it matters much more
on flash devices whose operations are measured in microseconds. To take full advantage of flash,
users need software expressly designed for the native operations and capabilities of NAND flash.

THE STATE OF SSDS
For many years SSDs were almost exclusively built to seamlessly replace hard drives; they not only
supported the same block-device interface, but also had the same form factor (e.g., a 2.5- or 3.5-inch
hard drive) and communicated using the same protocols (e.g., SATA, SAS, or FC). This is a bit like
connecting an iPod to a car stereo using a tape adapter; now it seems that 30-pin iPod connectors are
more common in new cars than tape decks are. Recently SSDs have started to break away from the
old constraints on compatibility: some laptops now use a custom form-factor SSD for compactness,
and many vendors produce PCI-attached SSDs for lower latency.

The majority of SSDs still emulate the block interface of hard drives: reading and writing an
arbitrary series of sectors (512-byte or 4-KB regions). The native operations of NAND flash memory
are different enough to create some substantial challenges. Reads and writes happen at the
granularity of a page (usually around 8 KB) with the significant caveats that writes can occur only
to erased pages, and pages are erased exclusively in blocks of 32-64 (256-512 KB). While a detailed
description of how an FTL presents a block interface from flash primitives is beyond the scope of this
article, it’s easy to get a sense of its complexity. Consider the case of a block in which all pages have
been written, and the device receives an operation to logically overwrite the contents of one page.

FILE SYSTEMS AND STORAGE

3

The FTL could copy the block into memory, modify the page, erase the block, and rewrite it in its
entirety, but this would be very slow—slower even than a hard drive! In addition, each write or erase
operation wears out NAND flash. Chips are rated for a certain number of such operations—anywhere
from 500-50,000 cycles today depending on the type and quality, and those numbers are shrinking
as the chips themselves shrink. A naive approach to block management would quickly wear down
the media; and to compound the problem, a frequently overwritten region would wear out before
other regions. For these reasons, FTLs use an indirection layer that allows data to be written at
arbitrary locations and implements wear leveling, the process of distributing writes uniformly across
the media.2

BRIDGING THE GAP
The algorithms that make up an FTL are highly complex but no more than those of a modern file
system. Indeed, the FTL and the file system have much in common. Both track allocated versus free
regions, both implement a logical-to- physical mapping, and both translate one operation set to
another. Newer FTLs even include facilities such as compression and deduplication—still marquee
features for modern file systems. FTLs and file systems are usually built in isolation. The idea of a
dramatic integration and reorganization of the responsibilities of the FTL and file system represents a
classic conundrum: who will write software for nonexistent hardware, and who will build hardware
to enable heretofore-unwritten software?

Most SSD vendors are focused on a volume market where requiring a new file system on the host
would be an impediment rather than an advantage. SSD vendors could enable the broader file-
system developer community by providing different interfaces or opening up their firmware, but
again—and without an obvious and compelling file system—there’s little incentive. The exception
was Indilinx’s participation in the OpenSSD10 project, but the primary focus was FTL development
and experimentation within conventional bounds. OpenSSD became effectively defunct when
OCZ acquired Indilinx. There seems to be no momentum and only vague incentive for vendors to
give developers the level of visibility and control that they most want. Mainstream efforts to build
flash awareness into file systems have led to more modest modifications to the interface between file
system and SSD.

The most publicized interface between the file system and SSD is the ATA TRIM command or
its counterpart, the SCSI UNMAP command. TRIM and UNMAP convey the same meaning to a
device: the given region is no longer in use. One of the challenges with an FTL is efficient space
management; and the more space that’s available, the easier it is to perform that task. As free space
is exhausted, FTLs have less latitude to migrate data, and they need to keep data in an increasingly
compact form; with lots of free space, FTLs can be far sloppier.

For both performance and redundancy, almost all SSDs “overprovision.” They include more flash
memory capacity than the advertised capacity of the SSD by anywhere from 10 to 100 percent.
File systems have the notion of allocated and free blocks, but there isn’t a means—or a reason—to
communicate that information to a hard drive. To let SSDs reap the benefits of free storage, modern
file systems use the TRIM or UNMAP commands to indicate that logical regions are no longer in use.
Some SSDs—particularly those designed for the consumer market—greatly benefit from file systems
that support TRIM and UNMAP. Of course, for a file system whose steady state is close to full, TRIM
and UNMAP have very little impact because there aren’t many free blocks.

FILE SYSTEMS AND STORAGE

4

INCREMENTAL REVOLUTION
While many companies participate in incremental improvements, the most likely candidates to
create a flash-optimized file system are those that build both SSDs and software that runs on the
host. The most popularized example thus far is DirectFS6 from FusionIO. Here, the flash storage
provides more expressive operations for the file system. Rather than solely using the legacy block
interface, DirectFS interacts with a virtualized flash storage layer. That layer manages the flash media
much like a traditional FTL but offers greater visibility and an expanded set of operations to the file
system above it.

DirectFS achieves significant performance improvements not by supplanting intelligence in the
hardware controller, but by reorganizing responsibilities between the file system and flash controller.
For example, FusionIO has proposed extensions to the SCSI standard that perform scattered reads
and writes atomically.3 These are easily supported by the FTL, but dramatically simplify the logic
required in a file system to ensure metadata consistency in the face of a power failure. DirectFS also
relies on storage that provides a “sparse address space”, which effectively transfers allocation and
block mapping responsibilities from the file system to the FTL, a task the FTL already must do. A
2010 article by William Josephson et al. states that “novel layers of abstraction specifically for flash
memory can yield substantial benefits in software simplicity and system performance.”6

As with TRIM, incrementally adding expressiveness and functionality to the existing storage
interfaces allows file systems to take advantage of new facilities on devices that provide them.
Storage system designers can choose whether to require devices that provide those interfaces or to
implement a work-alike facility that they disable when it’s not needed. Device vendors can decide
whether supporting a richer interface represents a sufficient competitive advantage. Though this
approach may never lead to an optimal state, it may allow the industry to navigate monotonically to
a sufficient local maximum.

THE CHICKEN AND THE EGG
There are still other ways to construct a storage system around flash. A more radical approach is to
go further than DirectFS, assigning additional high-level responsibilities to the file system such as
block management, wear leveling, read-disturb awareness, and error correction. This would allow
for a complete reorganization of the software abstractions in the storage system, ensuring sufficient
information for proper optimization where today’s layers must cope with suboptimal information
and communication. Again, this approach today requires a vendor that can assert broad control over
the whole system—from the file system to the interface, controller, and flash media. It is certainly
tenable for closed proprietary systems—indeed, several vendors are pursuing this approach—but for
it to gain traction as a new open standard would be difficult.

SSD ALCHEMY
The SSDs that exist today for the volume market are cheap and fast, but they exhibit performance
that’s inconsistent and reliability that’s insufficient. Higher-level software designed with full
awareness of those shortcomings could turn that commodity iron into gold. Without redesigning
part or all of the I/O interface, those same SSDs could form the basis of a high-performing and
highly reliable storage system.

Rather than designing a file system around the properties of NAND flash, this approach would

FILE SYSTEMS AND STORAGE

5

treat the commodity SSDs themselves as the elementary unit of raw storage. NAND flash memory
already has complicated intrinsic properties; the emergent properties of an SSD are even more
obscure and varied. A common pathology with SSDs, for example, is variable performance when
servicing concurrent or interleaved read and write operations. Understanding these pathologies
sufficiently and creating higher-level software to accommodate them would represent the flash
version of an existential software parable: enterprise quality from commodity components. It’s a
phenomenon that the storage world has seen before with disks; software such as ZFS from Sun has
produced fast, reliable systems from cheap components.

The only easy part of this transmutation is finding the base material. Building such a software
system given a single, unchanging SSD would already be complicated; doing it amid the changing
diversity of the SSD market further complicates the task. The properties of flash differ between
types and fabrication processes, but change happens at the rate of hardware evolution. SSDs change
not only to accommodate the underlying media and controller hardware, but also at the speed of
software, fixing bugs and improving algorithms. Still, some vendors are pursuing this approach11
because, while it is more complex than designing for purpose-built hardware, it has the potential to
produce superlative systems that ride the economic curve of volume SSDs.

NEXT FOR FLASH
The life span of flash as a relevant technology is a topic of vigorous debate. The cost of flash memory
has yet to catch up with that of hard disk drives, but prices per gigabyte are approaching those of
HDDs from less than a decade ago, as shown in figure 1. While flash has ridden its price and density
trends to a position of relevance, some experts anticipate fast-approaching limits to the physics of
scaling NAND flash memory. Others foresee several decades of flash innovation. Whether it is flash
or some other technology, nonvolatile solid-state memory will be a permanent part of the storage
hierarchy, having filled the yawning gap between hard-drive and CPU speeds.8

The next evolutionary stage should see file systems designed explicitly for the properties of
solid-state media rather than relying on an intermediate layer to translate. The various approaches
are each imperfect. Incremental changes to the storage interface may never reach the true acme.
Creating a new interface for flash might be untenable in the market. Treating SSDs as the atomic unit
of storage may be just another half-measure, and a technically difficult one at that.

Some companies today are betting on the relevance of flash at least in the near term—some
working within the confines of today’s devices, others building, augmenting, or replacing the
existing interfaces. The performance of flash memory has whetted the computer industry’s appetite
for faster and cheaper persistent storage. The experimentation phase is long over; it’s time to build
software for flash memory and embrace the specialization needed to realize its full potential.

LOVE IT, HATE IT? LET US KNOW
feedback@queue.acm.org

ADAM H. LEVENTHAL is the CTO at Delphix, a database virtualization company. Previously he served
as Lead Flash Engineer for Sun and then Oracle where he designed flash integration in the ZFS Storage
Appliance, Exadata, and other products. For over a decade, Adam has been involved in storage system
design at Sun, Oracle, and now Delphix.

FILE SYSTEMS AND STORAGE

6

REFERENCES

1. �Btrfs wiki. https://btrfs.wiki.kernel.org/index.php/Main_Page
2. �Cornwell, M. 2012. Anatomy of a solid-state drive. ACM Queue 10(10); http://queue.acm.org/detail.

cfm?id=2385276
3. �Elliott, R., Batwara, A. 2012. Notes to T10 Technical Committee. 11-229r4 SBC-4 SPC-5 Atomic

writes and reads http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-229r4.pdf; 12-086r2 SBC-4 SPC-5
Scattered writes, optionally atomic http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-086r2.pdf; 12-
087r2 SBC-4 SPC-5 Gathered reads - optionally atomic http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-
087r2.pdf

4. �Gray, J., Fitzgerald, B. 2008. Flash disk opportunity for server applications. ACM Queue 06(04);
http://queue.acm.org/detail.cfm?id=1413261

5. �Hitz, D., Lau, J.; Malcolm, M. 1994. File system design for an NFS file server appliance. WTEC’94
USENIX Winter 1994 Technical Conference: 19-19. http://dl.acm.org/citation.cfm?id=1267093

6. �Josephson, W. K., Bongo, L. A., Li, K., Flynn, D. 2010. DFS: A file system for virtualized flash
storage. ACM Transactions on Storage (TOS); 6(3). http://dl.acm.org/citation.cfm?id=1837922

7. �Leventhal, Adam. 2008. Flash storage today. ACM Queue 6(4); http://queue.acm.org/detail.
cfm?id=1413262

8. �Leventhal, Adam. 2009. Triple-parity RAID and beyond. ACM Queue 7(11); http://queue.acm.org/
detail.cfm?id=1670144

9. �Moshayedi, M., Wilkison, P. 2008. Enterprise SSDs. ACM Queue 06(04); http://queue.acm.org/
detail.cfm?id=1413263

10. The OpenSSD project. http://www.openssd-project.org/wiki/The_OpenSSD_Project
11. PureStorage FlashArray. http://www.purestorage.com/flash-array/purity.html

© 2013 ACM 1542-7730/13/0300 $10.00

	March 2013 Cover
	Discrimination
	Eventual
	File

